etection of reservoir quality using Bayesian seismic inversion

نویسندگان

  • Michael E. Glinsky
  • Ian Wark
چکیده

Sorting is a useful predictor for permeability. We show how to invert seismic data for a permeable rock sorting parameter by incorporating a probabilistic rock-physics model with floating grains into a Bayesian seismic inversion code that operates directly on rock-physics variables. The Bayesian prior embeds the coupling between elastic properties, porosity, and the floating-grain sorting parameter. The inversion uses likelihoods based on seismic amplitudes and a forward convolutional model to generate a posterior distribution containing refined estimates of the floating-grain parameter and its uncertainty. The posterior distribution is computed using Markov Chain Monte Carlo methods. The test cases we examine show that significant information about both sorting characteristics and porosity is available from this inversion, even in difficult cases where the contrasts with the bounding lithologies are not strong, provided the signal-to-noise ratio S/N of the data is favorable. These test cases show about 25% and 15% improvements in estimated standard deviations for porosity and floating-grain fraction, respectively, for peak S/N of 6:1. The full posterior distribution of floatinggrain content is more informative, and shows enhanced separation into two clusters of clean and poorly sorted rocks. This holds true even in the more difficult test case we examine, where notably, the laminated reservoir net-to-gross is not significantly improved by the inversion process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Capability of the Stochastic Seismic Inversion in Detecting the Thin Beds: a Case Study at One of the Persian Gulf Oilfields

The aim of seismic inversion is mapping all of the subsurface structures from seismic data. Due to the band-limited nature of the seismic data, it is difficult to find a unique solution for seismic inversion. Deterministic methods of seismic inversion are based on try and error techniques and provide a smooth map of elastic properties, while stochastic methods produce high-resolution maps of el...

متن کامل

Delineating Hydrocarbon Bearing Zones Using Elastic Impedance Inversion: A Persian Gulf Example

Reservoir characterization plays an important role in different parts of an industrial project. The results from a reservoir characterization study give insight into rock and fluid properties which can optimize the choice of drilling locations and reduce risk and uncertainty. Delineating hydrocarbon bearing zones within a reservoir is the main objective of any seismic reservoir characterization...

متن کامل

Joint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis

Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...

متن کامل

Amplitude Variation with Offset Inversion Analysis in One of the Western Oilfields of the Persian Gulf

Reservoir characterization has a leading role in the reservoir geophysics and reservoir management. Since the interests of the reservoir geophysics and reservoir managements are the elastic properties and reservoir properties of the subsurface rock for their purposes, a robust method is required for converting seismic data into elastic properties. Accordingly, by employing a rock physics model ...

متن کامل

mproved resolution in Bayesian lithology / fluid inversion from prestack eismic data and well observations : Part

The focus of our study is lithology/fluid inversion with spatial coupling from prestack seismic amplitude variation with offset AVO data and well observations. The inversion is defined in a Bayesian setting where the complete solution is the posterior model. The prior model for the lithology/fluid LF characteristics is defined as a profile Markov randomfield model with lateral continuity. Each ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007